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Abstract

Tags and other characteristic, externally perceptible features that are consistent among groups of
animals or humans can be used by others to determine appropriate response strategies in societies. This
usage of tags can be extended to artificial environments, where agents can significantly reduce cognitive
effort spent on appropriate strategy choice and behavior selection by reusing strategies for interacting
with new partners based on their tags. Strategy selection mechanisms developed based on this idea
have successfully evolved stable cooperation in games such as the Prisoner’s Dilemma game but relies
upon payoff sharing and matching methods that limit the applicability of the tag framework. Our goal
is to develop a general classification and behavior selection approach based on the tag framework. We
propose and evaluate alternative tag matching and adaptation schemes for a new, incoming individual to
select appropriate behavior against any population member of an existing, stable society. Our proposed
approach allow agents to evolve both the optimal tag for the environment as well as appropriate strategies
for existing agent groups. We show that these mechanisms will allow for robust selection of optimal
strategies by agents entering a stable society and analyze the various environments where this approach
is effective.

1 Introduction

Agents in open multi-agent environments must be able to quickly adapt to new environments and use past,
relevant experience to react to new scenarios and choose effective interaction policies with new partners.
As in human societies, agents in artificial societies also come with external features that may, in a large
majority of cases, suggest social groups they belong to and hence present at least a coarse-level view of their
behavioral characteristics, biases and preferences.

For example, businesses often employ the idea of signalling; that is, to make explicit decisions about
the business’s appearance (such as the area it is located in, the exterior design of the building, etc) which
conveys well-understood signals to potential clients about the reliability of the business. Similarly, consider
the scenario of interviewers and interviewees at a job fair. In that case, the groups of interviewers and
interviewees are two interacting populations. Interviewees are looking for jobs of interest to them: to
be viewed as attractive and dependable to the target pool of interviewers, interviewees can adapt their
appearance, both in person and on paper, and hope to get on the short list of those interviewers to those
they would prefer to interact with. In addition, it might require slightly different presentation and interaction
style to impress different interviewers. The appearance and posturing of different interviewers can also suggest
whether, for example, a more formal or a more casual interaction modality is suitable for the interviewee to
maximize their chances of making the next level of interviews.

External features or tags of an agent can then be utilized to both reduce cognitive effort in the strategy
selection and to provide a means to classify agent experience. While these generalizations are not always
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socially optimal, as in social stereotypes, they do provide a key tool for cognition that allows a pragmatic
management of the complexity of life [7].

Prior tag mechanisms have shown that cooperation is possible within the tags framework [9]. These
mechanisms however are not particularly suited for open environments. Limitations on agent interactions
and payoff distribution may incite cooperation, however they restrict the conditions under which agents can
learn within the environment. Another shortcoming is that although these mechanisms allow choosing of
which partners in the environment to interact with, it does not enable learning appropriate strategies to
interact with each and every member. In this paper, we are interested in developing tag-based mechanisms
that allow newcomers to a society to adapt both their tag (external appearance) and their matching strategy
(who they want to cooperate/not cooperate against). Therefore we will analyze the interactions of agents in
open environment where a group of new agents may migrate to a population of stable agents. The goal of
these newcomers, then will be to quickly learn the habitual preferences and behavioral biases of the existing
population so that they are able to effectively and gainfully interact with them.

To facilitate speedy learning, we assume two basic features in the environment: (a) the stable population
has some latent behavioral biases that are at least indirectly reflected in their external, observable featuresEI,
and (b) members of the newly arriving group can independently interact with the members of the stable
population and that their relative success or the reward from this interaction are shared with other new-
comers, who can then choose to alter their interaction strategies to align with the more successful of their
peers.

In this paper, we adopt a binary interaction outcome scenario, where in each interaction, each party can
choose to cooperate (C) or not (C) with the opponent. We assume that each agent, both in the incoming and
existing populations, have an external, visible feature set or tag and an internal hidden matching mechanism
that determines whom that agent will cooperate with. Matching an agent implies cooperating with that
agent, while not matching implies not cooperating. We investigate various scenarios of varying payoffs for
matching and not matching, corresponding to different real world situations.

We evaluate several combinations of evolutionary and classical learning approaches to see if the incoming
population can successfully develop effective interaction policies from repeated interactions. Learning of such
policies is key for a successful assimilation of the incoming population into the stable one. Our results show
varying degree of success with different representation scheme and dictated by the correlation between the
external features and the intrinsic behavioral traits of the stable population.

In our study we also tried to create scenarios where learning agents are not best served by pure strategies
like “always cooperate” or “always not cooperate”, but are better served by conditional policies like “coop-
erate with cooperators and do not cooperate against non-cooperators”. We propose a method to adjust the
payoff matrix of the game such that the evolving agents are incentivized to play conditionally depending on
its opponent’s expected behavior rather than committing to defecting or cooperating unilaterally.

2 Related Works

Previous work on tag-based mechanisms of game-playing and cooperation have focused on developing evo-
lutionary schemes to learn optimal actions based on tag relationships to strategies [11 [, [I0]. The proposed
mechanisms are generally developed to be played in iterated stage games of Prisoner’s Dilemma or the
Anti-Cooperation game.

Such mechanisms invoke population models of learning, in which agents may develop identities via
mimicry [I0]. McDonald and Sen observe that the particular game being played by the agents has a sig-
nificant effect on strategy. Agents are more likely to coordinate in scenarios where effective coordination
among agents is achieved by mimicry, i.e., agents can choose the same behavior to achieve coordination and
hence homogeneous agents can achieve optimal outcome. However, existent tag-based mechanisms are less
effective in scenarios where agents play games in which coordinating to attain some Nash or Pareto-optimal
equilibrium requires diverse strategies from each agent, i.e., heterogeneous agents outperform homogeneous
agents.

INote that we do not require the knowledge of that mapping or, for that matter, any guidance to the nature of the function(s)
mapping from external appearances to intrinsic behavioral traits.



Such models provide effective mechanisms which consistently produce social rationality and/or Nash
equilibria [5]. The Principle of Social Rationality, as proposed by Hogg and Jennings [6], is: If a socially
rational agent can perform an action whose joint benefit is greater than its joint loss, then it may select that
action. The goal of Hales’ evolutionary model is to produce emergent dynamics which result in a system
of socially rational agents. We are interested in producing socially rational agents, but stubborn agents in
our system that refuse to cooperate force the learning agents in the system to not cooperate with others as
well. As a result, the problem is one of classifying stubborn agents based on their outward attributes and
cooperating with those that maximizes the number of cooperations, followed by non-cooperations.

Previous work on tag mechanisms also focuses on changing tag representation over the matching rep-
resentation [4]. Our model is interested only in tags composed of bit strings, and we suggest four novel
improvements to the matching mechanism that increase performance in the cooperation game.

Stereotyping in trust systems shares some very similar qualities with tag-based mechanisms, and similar
techniques have been used to construct such stereotypes [Il [12]. These approaches use a machine learning
classifier to separate agents into groups, with the intent of making generalizations about groups to determine
the trustworthiness of agents inside such groups. Similar applications of classification in multi-agent frame-
works focus on subjects such as text classification [3]. We are interested in developing similar classification
schemes to map visible feature attributes into strategies.

Unlike the aforementioned papers, our approach uses an evolutionary scheme to generate a classi-
fier. While previous papers have gathered information based on single interactions, we are interested in
population-level interactions which is more realistic in social situations where interactions are numerous and
short. The evolutionary mechanism we introduce includes sharing of tag information among the evolving
population as well as strategic information. Finally, our agents play a different simultaneous game in which
cooperation from both players is encouraged, and otherwise the preferred action is to not cooperate. This
game models many realistic situations, in which agents are motivated to cooperate with others but because of
preconceived negative biases, there are those who will not cooperate with certain groups. In this case, players
are motivated to not attempt cooperation with these agents as well, as some sort of negative retribution. In
some ways, players in this game are learning to be socially rational, but in contrast to previous works there
exists a group of irrational agents (known as “static agents”) which act irrationally in all respects.

3 Simulation Setup

In the current framework, agents have two properties: a tag and a matching mechanism. Tags represent the
external identity of the agent; it is independent of the agent’s behavior, but other agents can only see the
tag of that agent. A tag is a bit string of length T'L; an agent a has a tag T, and T, (i) represents the value
of ith tag bit. The use of tags in a population of agents has been shown to induce coordination [I1].

Matching mechanisms are functions which gets the tag of the agent they are playing against, and return
the decision to cooperate or not. Details on the matching mechanism and specific implementations are listed
in section [l

The population is partitioned in two: a static population and a learning population. Agents in the
static population have fixed matching mechanisms and fixed tags. Those agents in the learning population
may modify both their tag and matching mechanism. The goal of these modifications is to maximize their
payoff in repeated games with random interactions with the static population.The static agents play C' or
C according to their matching mechanism and the opponent agent’s tag. The goal of evolving agents is to
separately and simultaneously adjust their tag, to maximize cooperation with the static population, and
develop a strategy that effectively discriminates cooperators from non-cooperators. In more details, the
learning task can be stated as follows: given the collection of past observations of tags and behaviors of
agents from the static population, choose a tag and matching mechanism that will match more tags of those
opponents whose matching mechanism match this agent’s tag while avoiding matching tags of those agents
whose matching mechanism does not match this agent’s tag. Another way of characterizing the desired
behavior is that an ideal tag-tag matching pair is one that will maximize cooperating with those agents who
cooperate with us|q and vice versa.

2In our work, an agent ”cooperates” with an opponent if its tag matching mechanism matches the tag of the opponent.



Note that the level of cooperation obtainable by the incoming population depends on the nature of the
static population. In particular, it is possible to learn to elicit more cooperation if static population tag
matching schemes are more match-friendly, i.e., match larger percentage of the tag space.

On another note, the effectiveness of the tag-based approach critically depends on the correlation between
external appearance and internal behaviors. Newcomers will face a more difficult coordination learning prob-
lem if external appearances do not correlate with agent behaviors, i.e., when agents of the static population
with similar tags behave very differently. We run experiments with different grouping schemes (discussed in
sections and [62) to simulate both relatively less and more challenging coordination learning scenarios.
Agents play a modified version of the coordination game where one mutual strategy is favored over the other;
the exact payoffs are discussed in section .1l in further detail.

4 Matching Methods

Matching mechanisms are deterministic functions on tags that determine an agent’s strategy; that is, match-
ing mechanism M : T — {C,C} maps from the tag space (all possible bitstrings of length T'L) to some
strategy in the available set of two strategies. The matching methods presented consider the only “visible”
features of their opponents — their tags — and do not consider any other information, e.g., their individual
identity, past performance, etc. In other words, agents have only information on themselves and the tag
they are interacting with when choosing a strategy in the game. Agents in the simulation cannot observe
the inner workings of matching mechanism of their opponents, i.e., it is the hidden strategy of the opponent.
The learning population will also use the matching mechanisms discussed below, but can modify hidden,
internal information to adjust its behavior.
In this study four different matching mechanisms are used:

Ternary Matching Strings: Agents use a ternary matching string M S composed of values in {0, 1, *},
where * corresponds to a don’t care, and of length equal to the length of the agent tags. For an agent
a with a ternary matching string to cooperate with agent b,

Mirs(a,b) : Vieqi,o,... 75y (MSa(i) = Ty(i)) V (M S.(i) = *),

where M S, (i) corresponds to value of the ith position of a’s matching string and Ty (4) is the value of
the ith position of the tag of agent b. So, a match occurs if, for every position, either the matching
string contains the same value as the other agent’s tag or contains a don’t care symbol. Such a matching
approach makes sense when agents decide on which tag positions or features are important, and judge
others based on whether they meet the criteria on these salient features.

Hamming Distance: Agents decide to cooperate based on the similarity of their own tags with that of
others. In Hamming matches, the total number of bit differences between the tags of two agents a and
b must be at least H,,;, but no more than H,,,,. In other words, agents should prefer those similar
to them, but prefer prefer their partners to be at least somewhat different:

My (a,b) : Hyin < {0 €7Z:TSa(i) # TSp(i)} < Hiag-
So matching is based only on the tags of the two interacting agents.

Decision Tree: In this matching mechanism, an agent uses a decision tree to classify the opponent’s tag
and decide whether to cooperate or not. Nodes in the tree correspond to tests on tag features and
results in one of two outcomes. Decision trees can compute arbitrary functions on boolean features
and hence the range of behaviors that can be represented is greater than that can be represented with
the matching mechanisms using Hamming distance or ternary strings.

There are two benchmark agents trained for comparison to the learning population’s performance:

Optimal Learning : Chooses the best possible tag and matching scheme to maximize the agent’s payoff.
The matching scheme is determined by finding the best strategy to play against each tag in the
static population. ”Best strategy” is defined as that which maximizes payoff, assuming that static



My:|0 1 * 1
Mi/Z 0 1 0 1
T;:]0 1 1 1

Figure 1: An example of a ternary matching string and tag interaction. Player ¢ will cooperate with j, but
7’ does not cooperate with j due to a mismatch in values at index 3.

7,:10 1 0 1
le 1 1
Te: |1 1 0 1

Figure 2: The Hamming distance between 7T; and 7j is 4, and between T; and T}, is 1. For cooperation,
agents need to be similar, but have some differences.

agents are equally likely to interact with a learning agent. The best tag is found by enumerating
over all possible tags and best matching schemes, and choosing that with the best performance. This
method is enumerative with complexity O(27%).Note that the optimal agents are capable of perfectly
discriminating between the static agents only if those with identical tags have identical behaviors,
which is not the case in general. The results of the optimal learners show us what is the best that
could be done against the current static population. So it should be viewed as a quality measure of
the static population instead of a competitor agent type to our evolving agentsﬁ. These agents would
need to memorize how to behave against any tag, which would require a memory of history while our
agents only need to know their evolved matching mechanism, and try playing against all agents to find
the best tag and then play again to decide the necessary behavior against them ,which is extremely
time consuming compared to an evolutionary scheme. We are trying to enable the agents to get the
best outcome possible without having the complete information of the static population, which would
make optimal learning impossible.

Best Ternary String : Agents with ternary matching strings will underperform the optimal learning agent
as the representative power of ternary strings are lower than the optimal learning agents. The best
ternary string for a given tag is found by enumerating over all possible ternary strings with complexity
O(3"9). Finding the best possible tag given each corresponding best ternary match requires enumer-
ating over all tags which is O(27%).; overall, we multiply these numbers to enumerate both tag and
ternary match together, which is O(67%) time complexity. Similar to the optimal learner, the results of
best ternary are the best that could be done against the given static population using ternary matching
strings. These results are the best results that our agents could achieve. Nonetheless, finding the exact
best pair of tag and matching strings would require the complete knowledge of the static population.
The evolving agents, however, interact with only a limited sampling of the population.

We have performed a series of experiments with different population configurations using different match-
ing mechanisms. In a given configuration, all static agents use the same matching mechanism, which can
be different from the matching mechanism used by all members of the incoming population. All but the
Optimal Learning/Best Ternary String matching methods have been used with the static population
members (this is because the learning classifier will change the existing population from a static to a dy-
namic one). Similarly, all but the Hamming Distance and Decision tree matching method has been used
with the incoming population members. This is because, as stated, the Hamming distance function is a fixed
function and does not contain a learning opportunity (though there is a possibility for learning H,,;, and
H 00, which we have not explored in this paper). The massive state space of the decision tree also makes
it hard for the learning population to develop any significant matching scheme.

3The optimal learning approach is a brute force approach which makes it infeasible for large populations and large tag
lengths



5 Evolving the new population

The members of the incoming population need to adapt their behavior and external appearance, their
tags, so as to realize maximum utility from interaction with all the members of the static population. We
use an evolutionary framework, where each newcomer interacts with each existing agent. Their individual
experiences can be used, if desired, to adapt their personal strategy from personal interaction histories with
the static population, e.g., what is done when the Optimal Learning or Best Ternary match is used, Unlike
these optimal learning methods, the evolutionary framework allows for collaboration between agents in the
population to learn the behavior of the static population. As this is an evolutionary mechanism, the agents
do not keep track of all the interactions they have with each static agent. The only information they have is
the utility they receive at the end of a generation. They use this information to decide to keep their current
behavior or adopt some other agent’s behavior.

In the following we present the evolutionary process used to learn the tags and strategies of the incoming
population.

Algorithm 1 Evolutionary Algorithm

for g generations do

for each agent, Ag, in evolving population,Pr do
for each agent, As, in static population, Ps do
if Ag.matches(As.tag) then

if Ascooperates then
‘ Ag gets Poc;

else
| Ag gets Ps;
else

if Agdoesnotcooperate then
‘ Ag gets P

else
| Ag gets Pgg;

| calculate the fitness, average payoff, of Ag;
Create new empty Population Py
while Py is not full do
Choose agents a,b € Pe > a #b
if rand > Pcrossover then
| ¢ <« offspring created with uniform bit crossover
else
| c+ acopyofa
Mutate ¢ with probability Parutation;
L Add c to Py
Add the best Agent in Pgr to Py;
| Pe=Pn

For every generation, the population is able to reproduce both asexually and sexually; new agents will
be either copied from the previous generation, or a new agent which is produced via crossover of two agents
from the previous generation. Since the evolutionary learning population uses only ternary matching, the
crossover mechanism used is simply uniform.

The fitness of an agent in the evolving population is calculated by the cumulative payoff of games played
against the entire static population. The evolutionary algorithm selects 2 agents from the population to
decide one parent.The decision is made by selecting the agent with the highest fitness value of the two with
the probability of Psejection-This means the better agent will be selected with Pgejection and the worse one
still has the chance to be selected with the probability of 1 — Psejection. When two parents are selected,
with probability Poyossover tWo agents tag and match are used to generate a new offspring using uniform



crossover. This means with 1 — Pgyossover probability, the crossover will not occur and the first parent is
directly transferred to the next generation.

After selection, every agent will be subject to a mutation stage given a parameter mutation probability
I

The mutation operation used in the evolutionary process is dependent on the type of matching mechanism
used in the experiment. The Hamming distance method is not used in the evolutionary population, so no
mutation operator is used for that matching mechanism. For ternary Matching String (MS) mechanism the
mutation function traverses each bit of the MS and replaces it with one of 0,1 or * with the probability of
1. Mutation is not applied to the matching function generated by the intelligent classifier.

When the new population is, almost, ready the best agent from the previous population is copied directly
to the next generation to achieve elitism.

5.1 Payoff Matrix Adjustments

In most of the cooperation problems, pure strategies, which are very easy for the agents to come up with,
create good enough utilities so the agents become unwilling to move from that strategy and search for better
strategies. Drezewski shows that these strategies would cause the agents to get stuck at a local maximum
instead of searching for a global one [2]. In most real life scenarios, people rarely choose to use pure strategies
(interact with or ignore everybody), and instead adopt selective strategies.

Research on Commodity Theory has shown that the scarcity of some item is inversely proportional to its
value [8]. Since cooperation and non-cooperation are some commodity, the same principle may impact the
development of stereotypes. For example, an interviewee may attempt interviews with more interviewers if
hiring is low; however, when everyone is hiring, the interviewee would desire to not interview with those that
may not need them. To that end, the payoff matrix is adjusted to take into account the cost of heterogenous
outcomes (where the learning and static player choose different strategies) given the likelihood of cooperation
for a static population: if the static population is likely to cooperate, then the cost of cooperating with non-
cooperators increases; conversely, if the static population is not likely to cooperate, the cost of not cooperating
with cooperators increases. By calculating an 'unstabilized point’, we want to achieve a society which will
be willing to move away from pure strategies. That way the agents will be more likely to find the mixed
strategies, which will achieve better utilities.

As mentioned above, each interaction between a newcomer and a current member of the static population
corresponds to a stage game. The payoff matrix of the game incentivizes the evolving strategies and matching
mechanisms of the incoming population. We now outline our design of the payoff matrix that incentivizes
the emergence of conditional matching strategies, which respond to the matching behavior of the opponents,
rather than “always cooperate” or “always defect” matching behavior. For any random tag and a matching
mechanism, the probability of matching is affected by the matching mechanism used and the parameters of
the system. A signifies the difference in payoff of pure cooperation (that is, given a static population, the
learning agent chooses to cooperate in all cases) and pure non-cooperation. We then estimate the value of
A for a given system of static agents:

E[A] = k(Poc — Pee) + (1 = k) (Pog — Pee) (1)

where k is the probability that a member of a static population will cooperate given a random tag. k is
affected by the matching mechanism used by a static agent: the tag matching mechanism, for example, has
a very low k since one string yields very few cooperation across the set of possible tags.

There are three possible configurations of A which will radically effect the dynamics of the evolutionary
learning system:

1. When A >> 0, (is significantly greater than 0) a random learning population will be rewarded for the
few agents they cooperate with; as such, learning populations will converge towards a total cooperate
strategy;

2. When A << 0 (is significantly less than 0) the learning population is rewarded for not cooperating,
and will instead converge towards total non-cooperation;



| C C
4 «
2

Qla

Poc — 55 (Peg — )

Table 1: Payoff matrix for the evolving population (row player) against the static agent population (column
player) for & = 1 and probability k.

3. The special case of A = 0 represents when the payoff matrix does not incentivize the learning population
to adopt either total cooperation or defection; then any naive mixed strategy that ignores tags would
yield approximately the same payoff; agents then may be led to correctly classify the static population.

To increase payoff, learning agents must cooperate with cooperative static agents and correspondingly not
cooperate with non-cooperative agents. Since the trivial solutions for A >> 0 and A << 0 may be easily
developed, we further examine the case of A = 0, and the payoff matrix in Table [ is the solution to
Equation [l by appropriately choosing the payoff values for cooperation and non-cooperation.

Finally, we calculate k for every matching mechanism used for the static population. Consider krg, the
probability of matching a random tag given a random ternary matching string:

krs = Pnj;Lv (2)

where P,, is the probability of matching one bit. For a ternary string this value is % since, the possible
match values {0, 1,*} are equally probable and for any bit in {0,1} will match one item in {0,1} and will
definitely match *.

The corresponding probability for decision tree matching, kpp is
kpr = 0.5. (3)

Consider the decision tree D in the set of all possible decision trees for a given domain of tags. Then, a
complement decision tree D’ may be constructed by switching the binary classification of every leaf node on
the tree. So D and D’ have opposite classifications, and this transformation is unique for D and D’. Since
every decision tree has such a complement, any decision tree that may cooperate with a given tag will have
another tree that does not cooperate. Therefore, the probability of cooperation with a randomly generated
decision tree for any tag is 0.5.

Finally, we calculate the probability of matching for Hamming distance, kg p:

H’V?‘LG/I TL
kap = Z PTL=i 4 (1 - P,,)" « ( _ ) (4)

, i

i=Hmin
When the agents in the static population uses Hamming distance as their matching mechanism, the proba-
bility of a random generated tag matching their mechanism can be calculated as in Equation @l P, is the
probability of matching a bit as it was in the definition of krs. Hyipn is the minimum Hamming Distance
at which the agent will cooperate, and H,, . is the corresponding maximum.

6 Generating Realistic Static Population Structures

The main idea behind using stereotypes for behavior adjustment on static population, is that there exists
a relationship between external features and behaviors. Even if the behavior is not a direct function of the
external features, it is expected that the agents with similar external features should behave similarly.

For such an assumption to be valid, the agent populations in the static society in our experiment needed
to exhibit some underlying regularity. One way of creating such regularity was to create groups of individuals
from several stereotypical individuals chosen as seeds at the start of the population generation process. We
decided to implement two separate grouping approaches for the static population generation: uniform and
scale free grouping.



6.1 Uniform Grouping

Uniform grouping approach creates a number of agents to represent selected number of groups(Ngroups)-
This approach assumes there are approximately equal sized groups in static populations. Then the static
population is filled with agents which are copies of a randomly selected group. The probability of an agent
to belong to any group is equally likely in this approach. The algorithm to generate static population with
uniform grouping is presented in Algorithm

Algorithm 2 Generating Static Population Using Uniform Groups

Create Ngroups and representing agents A,,
while Psiqtic is not full do
Pick one of the representing A,
Make Ajew a copy of A,
Mutate Apew With Prytation probability
Add Anew to Pstatic

6.2 Scale-Free Grouping

In most of the real-life populations, agents are more likely to join larger groups thus making those groups
even larger. Scale-free grouping approach creates a number of agents to represent selected number of
groups(Nearoups ). Naroups agents are randomly created and added to the static population (Psiqsic). The
algorithm for generating static population with scale-free grouping is presented in Algorithm [Bl

Algorithm 3 Generating Static Population Using Scale-Free Groups

Create Ngroups agents and add them to Pstatic
while Psiqtic is not full do
Pick one of the existing agents(A,) in Pstatic
Make Anew a copy of A,
Mutate Apew With Poutation probability
Add Anew to Pstatic

The distribution of the agents into the groups, using these two grouping approaches, can be seen in
Figure Bl The major distinction between uniform and scale-free grouping is that scale-free grouping has a
larger variance in the tags and matching mechanisms. This is because the agents in uniform grouping will
base their identity of off an ideal leader of each group. On the other hand, agents in the scale free approach
may copy their identity from any member of the group, which may lead the resulting agent to be more
dissimilar than the ideal group leader. A learning scheme in the scale-free approach will need to determine
when it is appropriate to attempt to cooperate with the largest group, or try to coordinate with multiple
smaller groups.

7 Experimental Results

We now present results of our experiments with different population configurations, using different combi-
nations of matching mechanisms.

Unless otherwise specified, simulations are run until convergence (identical tags and matching strings in
the learning population) or until the system exceeds 10000 generations (in which the system likely never con-
verges). Our learning population has 100 incoming or new learning agents, to be tested against a population
of 1000 static agents. Mutation rates are different for the tag and matching mechanism. The tag mutation
rate is at %7 and ternary match mutation is WW. The match mutation rate needs to be much lower
than tag mutation rate since small adjustments in the ternary match string can have drastic effects on the
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entire population (especially when tag size is larger). The tag length of all agents is 8, and for Hamming
matches the parameters have the value H,,;,, = 2 and H,,,, = 4. The selection parameter for tournament
selection is set t0 Psejection = 0.8 and the crossover probability is 0.8.

During the simulation, each agent in the evolutionary learning population interacts with a random sample
of 10% of the static population. Their overall performance is determined by how the resulting agents interact
with the entire static population.

Results in Figure Bl and Figure [ indicate that even with few groups and smaller tags, the optimal
strategy cannot yield total coordination. This is especially true for the scale-free group case, in which only
2% coordinated cooperation could be achieved.

The evolutionary learning mechanism performs comparably with the others in group-related scenarios.
In many cases it has been able to find the best group to cooperate with, and can correctly adjust its tag
and matching mechanism to cooperate with that group in return. One challenge faced by the evolutionary
mechanism is that the large majority of tag and match combinations result in always defecting, and so the
agents need to focus their search on cooperative combinations. To encourage this outcome, learning agents
are initialized with matching strings composed entirely of *: that is, these agents begin by cooperating with
every agent in the other population. In this way, evolving agents are encouraged to find a good tag (that is,
a tag that yields high cooperation) before becoming more discriminatory.

Surprisingly, the optimal learning agent for random (in Figure[d]) and scale-free (in Figure[d) populations
perform similarly; both yield low degrees of coordinated cooperation. The fact that groups have more
diversity may make them more similar to random populations when the average intragroup distance is large
enough; however, one notable difference is that the best ternary and best evolutionary agents have higher
degrees of coordinated cooperation. Ternary strings are made to identify ideal agents to cooperate with;
as such, the challenge of a ternary string is simply to find a subset of similar tags that cooperate with the
given agent’s tag. The payoff for the outcome CClis also incredibly low for static ternary populations, so
agents with ternary matching strings desire to expand this subset as far as possible to cover all potential
cooperators.

7.1 Random Population Configurations for Static Ternary Matching

When agents are grouped, some inferences can be made about what type of behavior can be expected when
observing a certain tag. In the random population configuration, this relationship does not exist. Results
for evolving a Ternary population against a random static population is shown in the first row of Table
The best learning agent in this scenario could barely find any mutual cooperation; this shows the necessity
for grouping configurations of the population.

7.2 Alternative Matching Mechanisms for the Static Population

Table 2] shows the performance of the evolutionary mechanism against each matching mechanism used for
the static population grouped using the Uniform scheme.

When we tried our evolving agents against 3 types of static agents we get the results seen in Table
The first thing about the results which attract attention is the agents were getting perfect results against
the static populations using hamming distance. While this looks quite impressive, any random agent was
already expected to get 60% cooperation. This quality makes it a trivial problem to solve when we created
the static population by grouping them.

Against the decision tree population, the evolving agents were not very successful and they could not
really improve the prior probability of 50% getting cooperation. Since the decision tree matching scheme is
not similarity-based, small changes in tag composition may lead to significant, and difficult to learn, changes
in the behavior of a Decision tree matching mechanism. In essence, the learning problem is significantly more
difficult in this case as decision trees can represent a much larger complexity class of functions compared to
ternary matching, which for example cannot represent functions with disjunctions.

Ternary string-based matching was the most discriminatory; equation [2] indicates that a random agent
can expect to cooperate with only 4% of the population. This pattern was accounted for in the adjusted
payoff matrix. So the learning populations were unwilling to cooperate, and only did cooperate with a small
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number of static agents. Ternary strings are more discriminatory, so by their nature learning ternary strings
will have high rates of non-cooperation.

Hamming distance was the least discriminatory of all matching mechanisms used in the static population.
The evolutionary mechanism was able to cooperate with the entire static population; this is because the
grouping scheme made their behavior incredibly simple to learn. Unlike other matching mechanisms, it is
the tag that determines the behavior of an agent using the Hamming distance mechanism; as such, agents
with identical tags would share identical behaviors. Realistic matching mechanisms, on the other hand, take
into account both internal and external information when making judgments of an individual.

Static Match ccC cC CC | CC | Avg. Fitness
Ternary 0.48 | 91.15 5.93 | 2.45 0.07
Hamming 100.00 0.00 0.00 | 0.00 4.00
Decision 38.15 | 16.28 | 30.87 | 14.7 1.69

Table 2: The results for running the evolutionary mechanism and introducing the evolving population, who
use ternary strings for matching, against a static population of who use varying mechanisms.

7.3 Group numbers and the Optimal Strategy

Effect of Number of Groups on Optimal Learning Agent Strategy
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Figure 7: Empirical data of the rate of the best learning agent playing C' in a simulated game against 1000
uniformly grouped static agents with TS = 8. The line is the estimated proportion of static agents that may
cooperate with a given agent, assuming that the agent already cooperates with one group.

The number of groups in the static population has a significant effect on the optimal strategy that an
agent can have. Figure [1 shows the rate of the best optimal learning agent playing C' against the static
population with uniform grouping. There is clearly an exponential decreasing trend as the number of groups
increase; on average, the best learning agent can only cooperate with half of the static population when
there are two groups. By the time there are even 20 or more groups, the best learning agent is playing 20%
to 0% C against the static population.

The reason why the number of groups have such a strong impact on the optimal strategy is because
groups have a low likelihood of overlap with whom they cooperate with. For a limited case, suppose a static
population has g groups where each group has agents share identical tag and ternary matching mechanism,
and suppose that the optimal learning agent can always achieve total mutual outcomes. Clearly, the best
strategy can match at least one group by changing its tag and matching mechanism accordingly. How-
ever, matching any other group depends on how many groups are willing to cooperate with the learning
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Average Fitness for Best Agent by Tag Size
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Figure 8: The fitness achieved by best agent with different tag lengths.

agent’s chosen tag. This likelihood is the parameter, k, representing the likelihood of a matching mechanism
matching a random tag. Then, the estimated number of groups that an agent can cooperate with would be
determined from a binomial distribution:

E[C] = ; +z: (f) k(1 — k)9,

For TS — oo, k — 0 and the estimated number of groups that the best agent can cooperate with
approaches % (since the sum term is eliminated). In the experimental data, the best agent tends to cooperate
with more than the proportional estimated number of cooperators since it will always choose to cooperate
with groups that ”overlap” with others in their matching string (that is, multiple groups matching similar
tags) over those that do not.

7.4 Tag Length Effect

The length of the tag determines the size of the search space for our experiments. The longer tags means
a broader space so it becomes harder and harder for our agents to find the optimal (or in some cases even
near optimal) tag and match strings. We tried every even number as the tag length between 6 and 32 (both
included) to see how that effects our evolutionary population.

In Figure Blit is shown that the agents are able to find better strategies for shorter tags. When the tag
gets longer than 22 bits the agents usually get stuck in pure not cooperate strategy (see Figure [).

With higher tag lengths getting cooperation from any agent becomes really unlikely for the learning
population. When this is combined with our payoff adjustment method, the cost of not cooperating with a
cooperator becomes really high, because they are scarse. This pushes the agents to try to get non-cooperation
from all the static population and make sure that they do not defect a cooperator.

Some ways of improving the performance of the learning population has been listed earlier on: by
adjusting the learning matching mechanism to be initially all cooperate, learning agents are encouraged to
search the state space by tag before focusing on the matching mechanism. In addition, by reducing the
mutation rate of matches, the evolving population is given even more time to search the tag space without
deciding to defect from the entire population (which becomes more likely as tag size increases).
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Outcome Ratio of Best Agent by Tag Size
100 \ \ PR BN R T 3

e cc——
e ——— CNC ----
. NCC -
80—~ NCNC —-——
g 60 |
]
g
>
S a0t .
20 + |
0 g O G P I B
5 10 15 20 25 30 35
Tag Size

Figure 9: The distribution of outcomes with different tag lengths.

8 Concluding Remarks

Stereotyping is a core mechanism for identification and learning. Extracting hidden strategies from agents
using judgments of external features is essential to reusing learnt behavior in relevant context and with
appropriate company and hence to functioning effectively in a stable society. We investigate processes
simulating the assimilation of agents into new cultures and synthesis of personal stereotyping mechanisms
using an evolutionary approach. A set of matching mechanisms, which may classify agents into “cooperate”
and “no cooperate” categories, are introduced to reproduce stereotype development. Agents cooperate in an
evolutionary framework to learn inside an established society of agents.

Simulations consist of two populations: the incoming learning population and unchanging static popu-
lation. Interacting agents from different populations play a modified version of the Coordination game; the
goal is for both players to play identical, or mutual strategies. The optimal agents presented are a sort of
benchmark of our evolutionary mechanism for low tag sizes. Their performance in the trials given show that
the evolutionary population can, in many scenarios, perform as well as the optimal. In addition, the fact
that the performance of the best ternary string is also near the optimal in scenarios where the evolutionary
mechanism is not shows that this matching mechanism is effective.

While the evolutionary mechanism in our results shows effective adaptation to a wide variety of pop-
ulations, modifications to the process may benefit the system further. Currently, the learning process is
simultaneous over tag and match mechanism evolution: Separating these processes may produce mutual
outcomes with more consistency at the end of the simulation by ensuring more effective convergence. While
Ternary matching has proven to be an effective mechanism to discriminate for the learning population, it
has been shown to have poor performance against complex mechanisms such as decision trees. Alternative
learning matching schemes may be able to perform better in such scenarios.

In addition, while extending the tag length of the agents was explored in this paper, the conclusions
suggest that subtleties in behavior exist for smaller tag sizes. Adjustments may make this application more
realistic as Complex matching behavior may encourage more subtleties to appear as tags grow larger.
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